Sampling from Probabilistic Submodular Models
نویسندگان
چکیده
Submodular and supermodular functions have found wide applicability in machine learning, capturing notions such as diversity and regularity, respectively. These notions have deep consequences for optimization, and the problem of (approximately) optimizing submodular functions has received much attention. However, beyond optimization, these notions allow specifying expressive probabilistic models that can be used to quantify predictive uncertainty via marginal inference. Prominent, well-studied special cases include Ising models and determinantal point processes, but the general class of log-submodular and log-supermodular models is much richer and little studied. In this paper, we investigate the use of Markov chain Monte Carlo sampling to perform approximate inference in general log-submodular and log-supermodular models. In particular, we consider a simple Gibbs sampling procedure, and establish two sufficient conditions, the first guaranteeing polynomial-time, and the second fast (O(n log n)) mixing. We also evaluate the efficiency of the Gibbs sampler on three examples of such models, and compare against a recently proposed variational approach.
منابع مشابه
Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation
Modeling diversity of sets of items is important in many applications such as product recommendation and data summarization. Probabilistic submodular models, a family of models including the determinantal point process, form a natural class of distributions, encouraging effects such as diversity, repulsion and coverage. Current models, however, are limited to small and medium number of items du...
متن کاملNear-Optimal MAP Inference for Determinantal Point Processes
Determinantal point processes (DPPs) have recently been proposed as computationally efficient probabilistic models of diverse sets for a variety of applications, including document summarization, image search, and pose estimation. Many DPP inference operations, including normalization and sampling, are tractable; however, finding the most likely configuration (MAP), which is often required in p...
متن کاملVariational Inference in Mixed Probabilistic Submodular Models
We consider the problem of variational inference in probabilistic models with both log-submodular and log-supermodular higher-order potentials. These models can represent arbitrary distributions over binary variables, and thus generalize the commonly used pairwise Markov random fields and models with log-supermodular potentials only, for which efficient approximate inference algorithms are know...
متن کاملOn the Links between Probabilistic Graphical Models and Submodular Optimisation. (Liens entre modèles graphiques probabilistes et optimisation sous-modulaire)
A probabilistic graphical model encodes conditional independences among random variables, which is related to factorisable distributions. Moreover, the entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functio...
متن کاملParameter Learning for Log-supermodular Distributions
We consider log-supermodular models on binary variables, which are probabilistic models with negative log-densities which are submodular. These models provide probabilistic interpretations of common combinatorial optimization tasks such as image segmentation. In this paper, we focus primarily on parameter estimation in the models from known upper-bounds on the intractable log-partition function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015